Table of Contents

1. Optimal zoning configurations for solar access in high rise developments.. 1

Bibliography.. 3
Optimal zoning configurations for solar access in high rise developments

Author: Loghmani, Ciavash

Abstract: The increase the solar access on structures is part of the solution to reduce the demand for coal generated energy. It allows designers to use passive solar strategies and active solar power technology to integrate within buildings. However, within a dense city fabric, where many tall buildings exist, the task of optimizing solar access presents a number of challenges to designers. This study compares 10 different city planning patterns within a fixed software apparatus to see which configurations achieve optimal sun exposure. Furthermore, it takes these patterns and applies them to three different orientations in both Los Angeles and New York. This allows a comparison of not only configurations, but also orientations and geography to help determine possible configurations that a new high-rise development can adopt to maximize solar access. The purpose of this thesis is to measure which high rise building configurations best maximize solar access to potentially reduce overall city energy consumption by creating more opportunity to integrate passive and active solar applications in buildings within a growing urban society. Since very few studies have been conducted in this area of research, it is the hope for this thesis to be a starting point for many future studies to follow.

Links: Linking Service, Click here to order Full Text from OCLC ILLiad

Subject: Architecture; Energy; Urban planning

Identifier / keyword: Communication and the arts, Social sciences, Applied sciences, Solar access, High rise studies, Shadow studies, Building configurations

Number of pages: 249

Publication year: 2008

Degree date: 2008

School code: 0208

Source: MAI 47/02, Apr 2009

Country of publication: United States

ISBN: 9780549786382

Advisor: Spiegelhalter, Thomas

Committee member: Knowles, Ralph, Noble, Douglas

University/institution: University of Southern California

Department: Architecture

University location: United States -- California

Degree: M.B.S.

Source type: Dissertations&Theses

Language: English