Table of Contents

1. Acoustics of the Bing Theater, USC: Computer simulation for acoustical improvements............................ 1
Acoustics of the Bing Theater, USC: Computer simulation for acoustical improvements

Author: Thiagarajan, Suganya

Abstract: The objective of this thesis was to study and analyze the acoustics of an existing theater/auditorium space. Background research and a case study were conducted on different types of auditorium spaces. The Bing Theatre on the University of Southern California (USC) campus was selected as a case study. The Bing, a one level, 551 seat Theater is primarily used for the theatrical performances of USC and occasional opera. Acoustical measurements, manual reverberation time calculations and computer model simulation were performed to determine the most important acoustical aspects for drama-speech intelligibility and uniformity of sound level. A survey was also conducted to find out the audience’s response to the Bing acoustics during a live performance. The results of the study and analysis indicated that the acoustics of the Bing Theatre in general is fine, for its primary uses. A few improvements might be made to the space, but the cost could most likely not be justified in light of the small improvement that might be achieved in the performance.

Links: Linking Service, Click here to order Full Text from OCLC ILLiad

Subject: Architecture; Acoustics; Theater

Classification: 0729: Architecture, 0986: Acoustics, 0465: Theater

Identifier / keyword: Communication and the arts, Pure sciences, California

Pages: 139 p.

Number of pages: 139

Publication year: 2004

Degree date: 2004

School code: 0208

Source: MAI 43/04, p. 1013, Aug 2005

Country of publication: United States

ISBN: 9780496160297, 049616029X

Advisor: Schierle, Goetz

University/institution: University of Southern California

University location: United States -- California

Degree: M.B.S.

Source type: Dissertations&Theses

Language: English

Document type: Dissertation/Thesis

Dissertation/thesis number: 1424256

ProQuest document ID: 305122811