Kyle Konis, Ph.D., AIA
Director, Chase L. Leavitt Master of Building Science Program; Associate Professor
B.A. Architectural Studies, University of Washington M.Arch, Yale University Ph.D, Architecture (Building Science), U.C. Berkeley
Kyle Konis, Ph.D, AIA is an Associate Professor of Architecture at the University of Southern California and Director of the Chase L. Leavitt Graduate Building Science Program. Prof. Konis’ research centers on improving the feedback loop between design intent and the performance of buildings in use, with an emphasis on the experience of building occupants. He seeks to develop novel performance metrics, participatory evaluation techniques, data-driven design support tools, and lessons learned from the study of existing buildings and their occupants. These outputs are produced with the goal of building a body of evidence to support innovative design practices that more closely align project performance with human needs and sustainability objectives.
Since arriving at USC in 2012, Prof. Konis has served as the principal investigator on 6 externally sponsored research projects, including two Upjohn Research Grants from the American Institute of Architects (AIA) and an EISG grant from the California Energy Commission (CEC), California’s primary agency responsible for advancing science and technology in the field of energy efficiency. His research has been published in prominent building science journals including Energy and Buildings, Building and Environment, and Solar Energy. His book, (co-authored with Stephen Selkowitz) titled, Effective Daylighting with High-Performance Facades, Emerging Design Practices, was published by Springer in 2017.
He is the recipient of the 2016 Architectural Research Centers Consortium (ARCC) New Researcher Award, the 2015 Association of Collegiate Schools of Architecture (ACSA) New Faculty Teaching Award, the 2015 ACSA Housing Design Education Award, and the 2015 Building Technology Educators Society (BTES) Emerging Faculty Award. He is a registered Architect in Washington and California.
- 419Architectural Sustainability Tools and MethodsArchitectural Sustainability Tools and MethodsWhat is sustainable design? How do you do it? And how do you know when you have succeeded? With the mainstream acceptance of the green building movement, an increasing number of buildings are promoted as examples of green or sustainable design. However, many “green” buildings do not live up to even basic expectations for resource efficiency, are expensive and accessible to only a small fraction of the population, create environments that are unhealthy, have life-spans that are short-lived due to their inability to adapt to changing end-user needs, and fail to create a meaningful sense of place or community. Defining sustainability requires accounting for the complex interaction of cultural, political, economic and ecological issues encompassing each project. And, it requires understanding how intervention at the scale of a single project can work to support outcomes at the scale of the street, neighborhood, district and beyond. This course begins by setting the context of the present crisis and the complex interconnections that exist. We will then attempt to dismantle the preconceived, incorrect understandings of “green” design and develop appropriate, fundamental principles for a sustainable built environment through a critical examination of existing sustainability metrics and rating systems. Throughout the semester, the course will establish knowledge of sustainable design principles through exploration of central concepts (e.g. resource efficiency, environmental responsiveness, adaptability, life-cycle assessment, place / placelessness), case studies of innovative projects, software tools, and self-directed research. In addition to Los Angeles, a range of urban (and urbanizing) locations across the world will serve as laboratories for investigation. The final third of the semester will be spent examining how specific sustainability performance objectives and strategies can be applied to develop innovative and holistic architectural proposals.
- 575aSystems The Thermal EnvironmentSystems The Thermal EnvironmentLearn to apply the fundamental scientific principles governing the thermal environment and human physiology to contemporary issues of environmentally responsive building design and resource efficiency. Students will explore the technologies and strategies to control the indoor environment as well as the basic analyses needed to inform design decision-making and examine project performance. The course will cover the laws of thermodynamics, heat transfer and solar geometry in the context of building design and operation, and occupant comfort - the building as an environmental filter, where environmentally responsive design strategies are used to minimize the size and operation of mechanical systems and demand for energy from renewable sources. Following these steps, energy efficient mechanical systems, controls, and renewable energy technologies will be covered as a supplement to these strategies.
- 588Interactive Architecture Computing and the Physical WorldInteractive Architecture Computing and the Physical WorldThis course is a seminar and workshop exploring physical interaction with computational media in real time. The widespread diffusion of sensing, computational, and communicative media into the physical realm presents an opportunity for exploring and constructing intelligent objects understood through dynamic and complex relationships of adaptation and improvisation to the environment, the site, and the human body. The course will chart and explore a range of approaches for integrating computation into the physical realm through a series of projects using physical computing prototyping tools. This course is focused on self-directed, project-based learning within and experimental and collaborative setting. Students will design and develop projects that use sensors and microcontrollers to translate sensory input to control electro-mechanical devices such as motors, servos, lighting or other hardware in real time. There are no prerequisites for the class. This is an interdisciplinary course and students from outside the School of Architecture are welcomed and encouraged to register